73 research outputs found

    NSCAT high-resolution surface wind measurements in Typhoon Violet

    Get PDF
    NASA scatterometer (NSCAT) measurements of the western Pacific Supertyphoon Violet are presented for revolutions 478 and 485 that occurred in September 1996. A tropical cyclone planetary boundary layer numerical, model, which uses conventional meteorological and geostationary cloud data, is used to estimate the winds at 10-m elevation in the cyclone. These model winds are then compared with the winds inferred from the NSCAT backscatter data by means of a novel approach that allows a wind speed to be recovered from each individual backscatter cell. This spatial adaptive (wind vector) retrieval algorithm employs several unique steps. The backscatter values are first regrouped in terms of closest neighbors in sets of four. The maximum likelihood estimates of speed and direction are then used to obtain speeds and directions for each group. Since the cyclonic flow around the tropical cyclone is known, NSCAT wind direction alias selection is easily accomplished. The selected wind directions are then used to convert each individual backscatter value to a wind speed. The results are compared to the winds obtained from the tropical cyclone boundary layer model. The NSCAT project baseline geophysical model function, NSCAT 1, was found to yield wind speeds that were systematically too low, even after editing for suspected rain areas of the cyclone. A new geophysical model function was developed using conventional NSCAT data and airborne Ku band scatterometer measurements in an Atlantic hurricane. This new model uses the neural network method and yields substantially better agreement with the winds obtained from the boundary layer model according to the statistical tests that were used

    VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-κB signaling pathway

    Get PDF
    BACKGROUND: Hypoxia-induced mitogenic factor (HIMF) is developmentally regulated and plays an important role in lung pathogenesis. We initially found that HIMF promotes vascular tubule formation in a matrigel plug model. In this study, we investigated the mechanisms which HIMF enhances expression of vascular endothelial growth factor (VEGF) in lung tissues and epithelial cells. METHODS: Recombinant HIMF protein was intratracheally instilled into adult mouse lungs, VEGF expression was examined by immunohistochemical staining and Western blot. The promoter-luciferase reporter assay, RT-PCR, and Western blot were performed to examine the effects of HIMF on VEGF expression in mouse lung epithelial cell line MLE-12. The activation of NF-kappa B (NF-κB) and phosphorylation of Akt, IKK and IκBα were examined by luciferase assay and Western blot, respectively. RESULTS: Intratracheal instillation of HIMF protein resulted in significant increase of VEGF, mainly localized to airway epithelial and alveolar type II cells. Deletion of NF-κB binding sites within VEGF promoter abolished HIMF-induced VEGF expression in MLE-12 cells, suggesting that activation of NF-κB is essential for VEGF upregulation induced by HIMF. Stimulation of lung epithelial cells by HIMF resulted in phosphorylation of IKK and IκBα, leading to activation of NF-κB. In addition, HIMF strongly induced Akt phosphorylation, and suppression of Akt activation by specific inhibitors and dominant negative mutants for PI-3K, and IKK or IκBα blocked HIMF-induced NF-κB activation and attenuated HIMF-induced VEGF production. CONCLUSION: These results suggest that HIMF enhances VEGF production in mouse lung epithelial cells in a PI-3K/Akt-NF-κB signaling pathway-dependent manner, and may play critical roles in pulmonary angiogenesis

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fourteen research projects.U.S. Navy - Office of Naval Research Grant N00014-91-J-1628Defense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489MIT - Woods Hole Oceanographic Institution Joint ProgramLockheed Sanders, Inc./U.S. Navy Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034U.S. Navy - Office of Naval Research Grant N00014-91-J-1628AT&T Laboratories Doctoral Support ProgramNational Science Foundation Fellowshi

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on sixteen research projects and a list of publications.Bose CorporationMIT-Woods Hole Oceanographic Institution Joint Graduate Program in Oceanographic EngineeringAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc./U.S. Navy - Office of Naval Research Contract N00014-91-C-0125U.S. Air Force - Office of Scientific Research Grant AFOSR-91-0034AT&T Laboratories Doctoral Support ProgramAdvanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation FellowshipMaryland Procurement Office Contract MDA904-93-C-4180U.S. Navy - Office of Naval Research Grant N00014-91-J-162

    Human serum-derived hydroxy long-chain fatty acids exhibit anti-inflammatory and anti-proliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circulating levels of novel long-chain hydroxy fatty acids (called GTAs) were recently discovered in the serum of healthy subjects which were shown to be reduced in subjects with colorectal cancer (CRC), independent of tumor burden or disease stage. The levels of GTAs were subsequently observed to exhibit an inverse association with age in the general population. The current work investigates the biological activity of these fatty acids by evaluating the effects of enriched human serum extracts on cell growth and inflammation.</p> <p>Methods</p> <p>GTAs were extracted from commercially available bulk human serum and then chromatographically separated into enriched (GTA-positive) and depleted (GTA-negative) fractions. SW620, MCF7 and LPS stimulated RAW264.7 cells were treated with various concentrations of the GTA-positive and GTA-negative extracts, and the effects on cell growth and inflammation determined.</p> <p>Results</p> <p>Enriched fractions resulted in poly-ADP ribose polymerase (PARP) cleavage, suppression of NFκB, induction of IκBα, and reduction in NOS2 mRNA transcript levels. In RAW264.7 mouse macrophage cells, incubation with enriched fractions prior to treatment with LPS blocked the induction of several pro-inflammatory markers including nitric oxide, TNFα, IL-1β, NOS2 and COX2.</p> <p>Conclusions</p> <p>Our results show that human serum extracts enriched with endogenous long-chain hydroxy fatty acids possess anti-inflammatory and anti-proliferative activity. These findings support a hypothesis that the reduction of these metabolites with age may result in a compromised ability to defend against uncontrolled cell growth and inflammation, and could therefore represent a significant risk for the development of CRC.</p

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

    Get PDF
    This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≥week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348
    corecore